Determination of Epoxy Resin’s Mechanical Properties by Experimental-computational Procedures in Tension

نویسندگان

  • K. - D. Bouzakis
  • N. Michailidis
چکیده

The use of epoxy resins in metal structures for adhesive reasons is getting wider. Epoxy resins possess enhanced mechanical, chemical and physical properties, i.e. increased shear and compression strength, resistance in solvents, as well as at high temperatures. Tensile tests were carried out with standard aluminium tension specimens glued with epoxy resins. The thickness of the glue and the acting crosssection area were variable. The specimens were cemented under constant temperature and humidity conditions. The experimental results were simulated with the aid of FEM-based procedures, while the stress–strain curves of the epoxy resins, as obtained by nanoindentations and corresponding FEM-supported algorithm, were taken into account. The obtained results allow the determination of the epoxy resins’ strength versus its thickness and the occupying cross-section area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Adhesive-Bonded Joint Reinforcement by Incorporation of Nano-Alumina Particles

Adhesive bonding technology is being used in a variety of modern industries, including the automotive, aerospace, maritime, construction, defense and so on. On the other side, polymeric nano - composites attracted both academic and industrial interests in the past decades. The scope of this paper is experimental investigation on the effects of the addition of Alpha-alumina nanoparticles to the ...

متن کامل

Effects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties

In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...

متن کامل

Dynamic Characteristics of Functionalized Carbon Nanotube Reinforced Epoxy Composites: An Experimental Approach

The effects of amine functionalization of carbon nanotubes (CNTs) and CNTs weight percent (wt. %), on the first bending natural frequencies and damping properties of CNT/epoxy composites are investigated in this paper. CNTs and amine functionalized CNTs (AFCNTs), with two different weight percentages, are used to manufacture the beam shaped specimens. Epoxy, CNT/epoxy (0.25 and 0.5 wt. % of CNT...

متن کامل

Assessing the Effect of Nylon 66 and Alumina on Mechanical and Thermal Properties of Epoxy-based Adhesives Through Taguchi Experimental Design Analysis

The effect of alumina and tough nylon 66 on microparticles’ presence the mechanical and thermal properties of epoxy adhesives is assessed here. In order to distribute the adhesive formulation components, in a uniform manner a mechanical stirrer is applied. The effect a combined percentage of nylon66 at (20،30،40 pph) and alumina micro-particles 20 μ (50,60,70 pph) selected based on Taguchi expe...

متن کامل

Mechanical Properties of Graphene/Epoxy Nanocomposites under Static and Flexural Fatigue Loadings

In the present study, the effect of various weight fractions of graphene nanoplatelet (GPL) on flexural fatigue behavior of epoxy polymer has been investigated at room temperature and generally the temperature was monitored on the surface of specimen during each test. The flexural stiffness of grapheme nano-platelet/epoxy nanocomposites at 0.1, 0.25 and 0.5 wt. % as a main effective parameter o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009